Moving Beyond Feature Design: Deep Architectures and Automatic Feature Learning in Music Informatics

نویسندگان

  • Eric J. Humphrey
  • Juan Pablo Bello
  • Yann LeCun
چکیده

The short history of content-based music informatics research is dominated by hand-crafted feature design, and our community has grown admittedly complacent with a few de facto standards. Despite commendable progress in many areas, it is increasingly apparent that our efforts are yielding diminishing returns. This deceleration is largely due to the tandem of heuristic feature design and shallow processing architectures. We systematically discard hopefully irrelevant information while simultaneously calling upon creativity, intuition, or sheer luck to craft useful representations, gradually evolving complex, carefully tuned systems to address specific tasks. While other disciplines have seen the benefits of deep learning, it has only recently started to be explored in our field. By reviewing deep architectures and feature learning, we hope to raise awareness in our community about alternative approaches to solving MIR challenges, new and old alike.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی خودکار سبک موسیقی

Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...

متن کامل

A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems

Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...

متن کامل

Automatic Instrument Recognition in Polyphonic Music Using Convolutional Neural Networks

Traditional methods to tackle many music information retrieval tasks typically follow a two-step architecture: feature engineering followed by a simple learning algorithm. In these ”shallow” architectures, feature engineering and learning are typically disjoint and unrelated. Additionally, feature engineering is difficult, and typically depends on extensive domain expertise. In this paper, we p...

متن کامل

A Combination of Hand-Crafted and Hierarchical High-Level Learnt Feature Extraction for Music Genre Classification

In this paper, we propose a new approach for automatic music genre classification which relies on learning a feature hierarchy with a deep learning architecture over hand-crafted feature extracted from an audio signal. Unlike the state-of-the-art approaches, our scheme uses an unsupervised learning algorithm based on Deep Belief Networks (DBN) learnt on block-wise MFCC (that we treat as 2D imag...

متن کامل

Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

Deep cross-modal learning has successfully demonstrated excellent performances in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics are taken into account. Stemming from the ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012